Indian Statistical Institute, Bangalore

B. Math. Second Year First Semester - Analysis III

Semestral Exam

Date : Nov 07, 2014

Section I: Answer any four, each question carries 6 marks, total marks: 24

- 1. Let (f_n) be a sequence of functions on a metric space E such that (f_n) converges uniformly to a function f on E and x be a limit point of E. If $\lim_{t\to x} f_n(t) = A_n$, prove that (A_n) converges and $\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$.
- 2. Let (f_n) be a uniformly converging sequence of bounded functions and $g: \mathbb{R} \to \mathbb{R}$ be a continuous function. Prove that $(g \odot f_n)$ converges uniformly. Does the result hold if f_n are not bounded? Justify your answer.
- 3. Do flips and primitive maps on \mathbb{R}^d have potential? Justify your answer.
- 4. (a) If r and R are smoothly equivalent surfaces and equivalence is given by G = (U, V), prove that $\frac{\partial R}{\partial s} \times \frac{\partial R}{\partial t} = \frac{\partial r}{\partial u} \times \frac{\partial r}{\partial v} \frac{\partial (U, V)}{\partial (s, t)}$.

(b) Find the fundamental vector product for hemisphere (Marks: 2).

- 5. Let $R = [a, b] \times [c, d]$ and Γ be its positively oriented boundary. If u, v are scalar valued functions on R with continuous second order partial derivatives, prove that $\int_{\Gamma} (v \frac{\partial u}{\partial x} u \frac{\partial v}{\partial x}) dx + (u \frac{\partial v}{\partial y} v \frac{\partial u}{\partial y}) dy = 2 \int \int_{R} (u \frac{\partial^2 v}{\partial x \partial y} v \frac{\partial^2 u}{\partial x \partial y}) dx dy.$
- 6. Let K be a compact subset of \mathbb{R}^d and $\{V_i\}$ be an open cover of K. Prove that there are $f_1, \dots, f_n \in C_c(\mathbb{R}^d)$ such that $0 \leq f_i \leq 1$ and $\sum f_i = 1$ on K.

Section II: Answer any two, each question carries 13 marks, total marks: 26

(a) Let (f_n) be a sequence of pointwise bounded functions on a countable set E. Prove that (f_n) has a subsequence that converges pointwise on E.

(b) Let (f_n) be a sequence of continuous functions on [0,1]. If (f_n) converges uniformly on [0,1], prove or disprove $\lim_{n\to\infty} \left[\int_0^{1-\frac{1}{n}} f_n - \int_0^1 f_n\right] = 0$ (Marks: 7).

2. (a) Let $\alpha: [a, b] \to \mathbb{R}^2$ be a smooth closed curve and $P: \alpha([a, b]) \to \mathbb{R}$ be a continuous function. Prove that $|\int Pdx| \leq \frac{1}{2}(\operatorname{Max}P - \operatorname{Min}P)\Lambda(\alpha)$ (Marks: 7). (b) If $Q = \{(x_1, x_2, x_3) \in [0, \infty)^3 \mid x_1 + x_2 + x_3 \leq 1\}$ and r_1, r_2, r_3 are nonnegative integers, prove that $\int_Q x_1^{r_1} x_2^{r_2} x_3^{r_3} dx = \frac{r_1! r_2! r_3!}{(3+r_1+r_2+r_3)!}$. [P.T.O] 3. (a) Let C be the triangle with vertices (0,0), (1,0) and (1,3) with clock-wise orientation. Find $\int_C \sqrt{1+x^5}dx + 2xydy$ and $\int_C p(x)dx + q(y)dy$ where p and q are real polynomials.

(b) Let T be an open set in \mathbb{R}^2 whose boundary is a piecewise smooth Jordan curve Γ with positive orientation and r be a \mathbb{R}^3 -valued function defined on an open set containing $T \cup \Gamma$ such that r defines a smooth surface S = r(T) and r has continuous 2nd order partial derivatives. If P is a continuously differentiable function defined on S = r(T), prove that $\int_{r(\Gamma)} P dx = \int \int_S \frac{\partial P}{\partial z} dz \wedge dx - \frac{\partial P}{\partial y} dx \wedge dy$ (Marks: 7).